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Abstract

We consider the motion of both point vortices and uniform vortex patches in arbitrary, possibly multiply connected,
regions bounded by impenetrable walls on the surface of a sphere. By exploiting knowledge of the functional form of
the relevant Green’s function in a pre-image circular domain that is conformally equivalent to a stereographic projection
of the fluid domain on the spherical surface, we first generalize Kirchhoff–Routh theory for point vortex motion in the
plane to point vortex motion on a spherical shell. Next, we study vortex patch motion and show that there is a contour
dynamics formulation for the evolution of uniform vortex patches in any finitely connected domain on a spherical shell
bounded by impenetrable walls. We describe a novel numerical scheme whereby this motion can be computed. Some illus-
trative calculations are shown.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In planar vortex dynamics, two of the simplest models of vorticity are the point vortex and the uniform
vortex patch. The point vortex model has the advantage that the dynamics is reduced to the motion of a (usu-
ally finite) set of points but suffers from the disadvantage that it fails to capture any finite-area effects associ-
ated with distributed vorticity models. For background on the point vortex problem, see Newton [20]. The
vortex patch model, in which regions of vorticity are assumed to be finite-area regions of uniform vorticity,
does not suffer from such a drawback [23,22]. Furthermore, owing to the material conservation of vorticity,
the dynamics of vortex patches can also be reduced to tracking the motion of the vortex jumps. The associated
numerical algorithm has become known as contour dynamics [24]. Such numerical algorithms have been exten-
sively studied in the literature. There now exist quite sophisticated manifestations of such codes; for example,
contour surgery [8,9] implements a method of dealing with the repeated formation of thin vortical filaments in
order to facilitate long-time calculations.
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These vortex models have predominantly been studied in free space with no solid boundaries present to
affect their motion. For many geophysical and astrophysical applications, however, it is crucial to incorporate
the effects of coastlines/shorelines on the motion of vortex structures since it is known that such boundaries
can greatly influence important dynamical processes such as the global transport of passive tracers like envi-
ronmental pollutants, biota and heat.

The study of vortex motion in complex, multiply connected domains bounded by impenetrable walls is very
much in its infancy. The Hamiltonian structure of the point vortex problem in multiply connected domains
was originally pointed out by Lin [17,18]. However, it is only recently that a constructive theory for computing
vortex motion in a given domain has appeared: Crowdy and Marshall [2] have found explicit formulae, up to
conformal mapping, for the Hamiltonians in fluid regions of arbitrary finite connectivity. These methods have
been applied in various circumstances, including the computation of point vortex motion around arrays of
circular islands [3] and through gaps in walls [5]. The calculation is facilitated by the fact that the boundary
value problem satisfied by the (hydrodynamic) Green’s function in the physical domain is conformally invari-
ant and the fact that the functional form for this Green’s function in a pre-image circular domain is known [2].

As for point vortex motion in bounded domains on the surface of a sphere, Kidami and Newton [16] have
considered this general problem. See also [13]. Their approach relies on the extension of the celebrated
‘‘method of images” for planar domains to a spherical surface. As in the planar case, this requires the flow
domain to have certain symmetry properties. In contrast, Crowdy [4] employs the technique of conformal
mapping to give a more general treatment of the point vortex motion in simply connected domains. The
key observation there is that, when boundaries are present, the fluid motion generated by a point vortex does
not have to be embedded in a sea of uniform vorticity. This relaxed requirement renders the boundary value
problem satisfied by the governing streamfunction conformally invariant. The Hamiltonian for the point vor-
tex motion can then be derived by the explicit knowledge of the Green’s function in a pre-image circular
domain.

In this paper we extend the conformal mapping approach of Crowdy [4] to study point vortex motion, in
multiply connected domains, on the surface of a sphere. By again exploiting the conformal invariance of the
boundary value problem satisfied by the Green’s function, together with our explicit knowledge of that
Green’s function for pre-image circular domains [2], we derive a formula which gives a transformation law
for the governing Hamiltonian under an arbitrary conformal mapping of the stereographically-projected fluid
domain (and, thus, in arbitrary multiply connected domains on the spherical surface). This result provides a
generalization of the classical planar Kirchhoff–Routh theory due to Lin [17,18] to point vortex motion in
bounded multiply connected domains on a spherical surface. To the best of the authors’ knowledge, no such
demonstration of the Hamiltonian structure of this problem has previously been given in the literature.

Next, we consider the vortex patch model. In recent work, Crowdy and Surana [7] have shown that there
exists a contour dynamics formulation for the motion of vortex patches in arbitrary multiply connected
domains in the plane. The key idea is to consider a conformal map to the physical region of interest from
a conformally equivalent circular pre-image region. Given this conformal map, the evolution of the pre-image
of a given vortex patch is tracked. Here, we extend this formulation to the surface of a sphere. While there are
additional terms in the equations associated with the stereographic projection, the contour dynamics formu-
lation remains essentially the same as for planar domains [7]. As a result, the numerical scheme developed in
[7] extends in a reasonably straightforward manner to the spherical case. A key advantage of our approach is
that it can be applied, in principle, to any multiply connected fluid region on the sphere for which a conformal
mapping from a circular pre-image region can be found, either analytically or numerically. Dritschel [9] has
already shown how to extend contour dynamics to the surface of a sphere, but does not include the effects
of solid walls. A study of the roll-up of strips of vorticity using contour dynamics methods on a spherical sur-
face (again, not including wall effects) has been performed by Dritschel and Polvani [11] with further studies of
the dynamics of uniform vortex regions performed later in Polvani and Dritschel [21].

2. Mathematical preliminaries

Let R denote a sphere and, without loss of generality, assume the sphere has unit radius. DR will be taken to
be an arbitrary multiply connected region (or ‘‘basin”) with finite connectivity on the surface of R. Let
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fDj j j ¼ 1; . . . ;Mg denote M P 0 islands inside DR and let the boundary of Dj be oDj. The outer boundary
enclosing the islands is denoted by oD0.
ðh;/Þ will denote the usual polar and meridional angles in spherical polar coordinates and r2

R will be the
Laplace–Beltrami operator defined by
r2
R �

1

sin h
o

oh
sin h

o

oh

� �
þ 1

sin2 h

o
2

o/2
: ð1Þ
The incompressible fluid motion on the surface of R can be described by a streamfunction w and the local vor-
ticity field x is related to it via
r2
Rw ¼ �x: ð2Þ
A point vortex solution at some position ðha;/aÞ on an unbounded spherical surface is defined to be the flow
given by a streamfunction satisfying
r2
Rwðh;/; ha;/aÞ ¼ �dðh;/; ha;/aÞ þ

1

4p
: ð3Þ
This represents a point vortex embedded in a sea of uniform vorticity. The latter is required to ensure that the
total integral of vorticity over the entire spherical shell vanishes. Such a requirement is not relevant for motion
in bounded domains since the vorticity field is no longer defined globally on the spherical surface.

In order to consider the case of vortex motion within DR, we introduce the hydrodynamic Green’s function

[12] Gsðh;/; ha;/aÞ satisfying
r2
RGsðh;/; ha;/aÞ ¼ �dðh;/; ha;/aÞ; in DR; ð4Þ
with boundary conditions
Gsðh;/; ha;/aÞ ¼ 0 on oD0;

Gsðh;/; ha;/aÞ ¼ Cj on oDj; j ¼ 1; . . . ;M :
ð5Þ
fCjjj ¼ 1; . . . ;Mg is a set of constants independent of ðh;/Þ (but generally dependent on ðha;/aÞ). These M con-
stants are determined by the M conditions that the circulations around all the enclosed islands are zero, i.e.,
I

oDj

oGs

on
ds ¼ 0; j ¼ 1; . . . ;M ; ð6Þ
where oGs=on is the normal derivative of Gs and ds is an element of arclength around the boundary of DR.
Let us introduce the stereographic projection of DR onto a region Dz in a complex z plane given by
z ¼ cotðh=2Þei/; za ¼ cotðha=2Þei/a : ð7Þ

za is the projection of the d-function singularity. More details of this projection can be found in [1]. We denote
the projections of the islands Dj and their boundaries oDj by Dz

j and oDz
j, respectively. This particular choice of

projection maps the north pole of the sphere to z ¼ 1; there is another choice which maps the south pole to
infinity. In some calculations where the vortex motion is predominantly around the regions near the north
pole, it may be advantageous to change to this alternative choice. Here, however, we restrict analysis to the
z-projection embodied in (7) and do not discuss the matter of swapping coordinate charts (a discussion of re-
lated matters can be found in Dritschel [10]).

We will now rewrite Gsðh;/; ha;/aÞ as a function of the new independent variables ðz;�zÞ. Let this new func-
tion be Gzðz;�z; za;�zaÞ. It can be shown that (4) takes the form (see [1])
ð1þ z�zÞ2 o2Gz

ozo�z
¼ �dðz; zaÞ; in Dz ð8Þ
It is also easy to see that
Gz ¼ 0 on oDz
0;

Gz ¼ Cj on oDz
j; j ¼ 1; . . . :;M ;

ð9Þ
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with
 I
oDz

j

oGz

onz
dsz ¼ 0; j ¼ 1; . . . ;M : ð10Þ
where oGz=onz is the normal derivative of Gz and dsz is an element of arclength around the boundary of the
basin in the z-plane of projection.

By an extension of the Riemann mapping theorem [14] it is known that Dz is conformally equivalent to
some circular pre-image regions Df consisting of the unit f-disc with M smaller circular discs excised. Let
C0 denote the unit disc in a parametric f-plane and let fCj j j ¼ 1; . . . ;Mg be the circular boundaries of the
enclosed discs. Let qj 2 R and dj 2 C, respectively, denote the radius and center of the circle Cj. The quantities
fðdj; qjÞjj ¼ 1; . . . ;Mg are known as the conformal moduli of the domain Df [19]. Let zðfÞ be the conformal
mapping from the Df to Dz. We will assume that zðfÞ is known either as an analytical formula or computable
by some numerical conformal mapping algorithm.

Let Gfðf; f; a; aÞ be the relevant hydrodynamic Green’s function now in the domain Df. By the conformal
invariance of the boundary value problem satisfied by this function, it follows that
Gsðh;/; ha;/aÞ ¼ Gzðz;�z; za;�zaÞ ¼ Gfðf; f; a; aÞ; ð11Þ
where a is the pre-image of the point za in Df under the map zðfÞ, i.e., za ¼ zðaÞ. An explicit form for the hydro-
dynamic Green’s function for Df has been found by Crowdy and Marshall [2] and is given by
Gfðf;�f; a; �aÞ ¼ � 1

2p
log

xðf; aÞ
axðf; �a�1Þ

���� ���� ¼ � 1

4p
log

xðf; aÞxð�f; �aÞ
j aj2xðf; �a�1Þ�xð�f; a�1Þ

 !
: ð12Þ
xðf; cÞ is the so-called Schottky–Klein prime function (hereafter denoted SK prime function) associated with
Df. One way of defining it is via an infinite product formula (see [2])
xðf; cÞ ¼ ðf� cÞx̂ðf; cÞ; ð13Þ

where
x̂ðf; cÞ ¼
Y

hi2H00

ðhiðfÞ � cÞðhiðcÞ � fÞ
ðhiðfÞ � fÞðhiðcÞ � cÞ ; ð14Þ
and H00 is a set of Möbius maps defined in detail in [2]. It can also be readily computed by a numerical algo-
rithm described by Crowdy and Marshall [6].

3. Kirchhoff–Routh theory on a spherical surface

We first focus on the point vortex problem. Consider fluid motion inside DR which is irrotational except for
N moving point vortices with fixed strengths fCi j i ¼ 1; . . . ;Ng located at points fðhai ;/ai

Þ j i ¼ 1; . . . ;Ng.
The streamfunction associated with this system is
wðh;/Þ ¼
XN

i¼1

CiG
sðh;/; hai ;/ai

Þ: ð15Þ
Gsðh;/; hai ;/ai
Þ can be split into a self-induced contribution Gpvðh;/; hai ;/ai

Þ and a non-self-induced contribu-
tion Ĝsðh;/; hai ;/ai

Þ so that
Gsðh;/; haj ;/aj
Þ ¼ Gpvðh;/; haj ;/aj

Þ þ Ĝsðh;/; haj ;/aj
Þ; ð16Þ
where
Gpvðh;/; haj ;/aj
Þ ¼ � 1

4p
log

ðz� zajÞð�z� �zajÞ
ð1þ z�zÞð1þ zaj�zajÞ

� �
ð17Þ
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is the Green’s function associated with an isolated point vortex of unit strength on a sphere without bound-
aries (written in terms of ðz;�zÞ). (17) is the solution of Eq. (3). Therefore
bGsðh;/; haj ;/aj
Þ ¼ � 1

4p
log

xðf; ajÞ�xð�f; �ajÞ
jajj2xðf; �a�1

j Þ�xð�f; a�1
j Þ

 !
þ 1

4p
log

ðz� zajÞð�z� �zajÞ
ð1þ z�zÞð1þ zaj�zajÞ

� �
;

¼ � 1

4p
log

x̂ðaj; ajÞx̂ð�aj; �ajÞ
j ajj2xðaj; �a�1

j Þ�xð�aj; a�1
j Þ

 !
þ 1

4p
log
ð1þ zðajÞ�zðajÞÞ2

j zfðajÞj2
þOðf� aj;�f� �ajÞ:

ð18Þ
Note first, from (18), the following reciprocity property:
bGsðh;/; haj ;/aj
Þ ¼ bGsðhaj ;/aj

; h;/Þ: ð19Þ
Second, note that
bGsðhaj ;/aj
; haj ;/aj

Þ ¼ �Rðaj; �ajÞ þ
1

2p
log

j zfðajÞ j
ð1þ zðajÞ�zðajÞÞ

; ð20Þ
where
Rðaj; �ajÞ �
1

4p
log

x̂ðaj; ajÞx̂ð�aj; �ajÞ
j ajj2xðaj; �a�1

j Þ�xð�aj; a�1
j Þ

 !
: ð21Þ
Rðaj; �ajÞ is sometimes referred to as the Robin function [2] for the point vortex motion in the f domain. Now,
the motion of the jth point vortex on a sphere is governed by the equations
_haj ¼
1

sin haj

owjðh;/Þ
o/

����
haj ;/aj

; _/aj ¼ �
1

sin haj

owjðh;/Þ
oh

����
haj ;/aj

; ð22Þ
where, wjðh;/Þ is the non-self-induced streamfunction
wjðh;/Þ ¼
XN

i¼1

0CiG
sðh;/; hai ;/ai

Þ þ Cj
bGsðh;/; haj ;/aj

Þ: ð23Þ
Here, the notation
PN

i¼10 indicates a sum over i between 1 and N but disallowing i ¼ j. Note that, for any j
obGsðh;/; hai ;/ai
Þ

o/

�����
haj ;/aj

¼ 1

2

obGsðhaj ;/aj
; haj ;/aj

Þ
o/aj

;

obGsðh;/; hai ;/ai
Þ

oh

�����
haj ;/aj

¼ 1

2

obGsðhaj ;/aj
; haj ;/aj

Þ
ohaj

;

ð24Þ
where, we have used the reciprocity (19) of bGs. Hence (22) can be expressed as
_haj ¼
1

sin haj

oWjðfhaig; f/ai
gÞ

o/aj

; _/aj ¼ �
1

sin haj

oWjðfhajg; f/ai
gÞ

ohaj

; ð25Þ
where we define
Wjðfhajg; f/ai
gÞ ¼

XN

i¼1

0CiG
sðhaj ;/aj

; hai ;/ai
Þ þ Cj

2
bGsðhaj ;/aj

; haj ;/aj
Þ: ð26Þ
Introducing the canonical change of variables
P j ¼ cos haj ; Qj ¼ /aj
; ð27Þ
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(25) becomes
_P j ¼ �
oWjðfP ig; fQigÞ

oQj

; _Qj ¼
oWjðfP ig; fQigÞ

oP j
; ð28Þ

WjðfP ig; fQigÞ � Wjðfcos�1 P ig; fQigÞ: ð29Þ

Hence, N vortex motion in a multiply connected domain on a sphere is a Hamiltonian dynamical system with
Cj
_Qj ¼

oH sðfQig; fP igÞ
oP j

; Cj
_P j ¼ �

oH sðfQig; fP igÞ
oQj

; ð30Þ
and H sðfP ig; fQjgÞ given by
HsðfQig; fP igÞ ¼
1

2

XN

j¼1

XN

i¼1

0CjCiG
sðcos�1 P j;Qj; cos�1 P i;QiÞ þ

1

2

XN

j¼1

C2
j
bGsðcos�1 P j;Qj; cos�1 P j;QjÞ
where we have again used the reciprocity (19) of Gs. Using (11) and (20) in above relation we get
HsðfQig; fP igÞ ¼
1

2

XN

j¼1

XN

i¼1

0CjCiG
fðaj; �aj; ai; �aiÞ �

1

2

XN

j¼1

C2
jRðaj; �ajÞ þ

1

4p

XN

j¼1

C2
j log

jzfðajÞj
ð1þ zðajÞ�zðajÞÞ

;

¼ H fðfaigÞ þ
1

4p

XN

j¼1

C2
j log

j zfðajÞ j
ð1þ zðajÞ�zðajÞÞ

;

¼ HzðfzaigÞ þ
1

4p

XN

j¼1

C2
j log

1

ð1þ zðajÞ�zðajÞÞ
ð31Þ
where H fðfaigÞ and H zðfzaigÞ denote the point vortex Hamiltonians in the f and z domains, respectively.
The important point to note is that the Hamiltonians governing N vortex motion on the surface of the

sphere are not invariant under either stereographic projection or conformal mapping. They do, however, have
simple transformation rules, embodied in (31). Formula (31) generalizes, to the surface of a sphere, similar
formulae given by Lin [17,18] for the Hamiltonians governing N point vortex motion in conformally equiva-
lent multiply connected planar domains.

3.1. Examples

We can now compute point vortex trajectories in some example domains. Consider a non-uniform channel
bounded by the northern hemisphere and a cap at the south pole. The resulting domain is doubly connected.
The stereographic projection of this fluid domain i.e. Dz, is conformally equivalent to an annulus q < jfj < 1
under the conformal map
zðfÞ ¼ f� a
j a j ðf� a�1Þ ; ð32Þ
for appropriate values of a 2 C and q 2 Rþ. The vortex trajectories exhibit two different behaviours: those
starting close to the upper or lower boundary of the channel encircle the channel; those starting in the middle
of the channel are closed though they do not encircle the channel (see Fig. 1).
Fig. 1. Two different views of point vortex trajectories in a non-uniform channel.



Fig. 2. Point vortex trajectories in a basin with two islands.
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Fig. 2 shows a similar calculation when there are two obstacles in a basin so the domain is now triply con-
nected. It should be clear that calculations in domains of any finite connectivity are similarly possible with no
additional difficulty. For geometrically interesting domains, conformal mappings from multiply connected cir-
cular pre-image regions are needed.

4. Vortex patch dynamics in bounded domains on a sphere

In this section we now consider fluid motion inside DR which is irrotational except for a time-evolving vor-
tex patch P s of uniform vorticity x0. We shall denote the stereographic projection of P s on the z-plane by P z

and the conformal pre-image of P z by P f. Let oP s, oP z and oP f denote the respective patch boundaries.
The streamfunction w corresponding to the velocity field induced by the patch P s on the sphere satisfies
r2
Rw ¼

�x0; ðh;/Þ 2 P s;

0 otherwise;

�
ð33Þ
with same boundary conditions as given earlier for Gs. In terms of Gs, w can be expressed as (see [7] for details)
wðh;/Þ ¼ x0

Z Z
P s

Gsðh;/; ha;/aÞdSðha;/aÞ: ð34Þ
Using the fact that the area element dS ¼ sin hdhd/ on the sphere and the area element dxdy ¼ ðd�z ^ dzÞ=2i on
the stereographic plane are related by
dS ¼ 4

ð1þ z�zÞ2
d�z ^ dz

2i
; ð35Þ
together with the scaling relation
d�z ^ dz ¼j z0ðfÞj2d�f ^ df; ð36Þ

and invoking the conformal invariance (11), we obtain
wðh;/Þ ¼ x0

Z Z
P s

Gsðh;/; ha;/aÞdSðha;/aÞ;¼ x0

Z Z
P z

Gzðz;�z; za;�zaÞ
4

ð1þ za�zaÞ2
d�za ^ dza

2i
;

¼ x0

2i

Z Z
P f

Gfðf;�f; a; �aÞ 4z0ðaÞ�z0ð�aÞ
ð1þ zðaÞ�zð�aÞÞ2

d�a ^ da: ð37Þ
The fluid velocity field ðuh; u/Þ can be determined from the stream function w as
u/ � iuh ¼
2z

sin h
owz

oz
¼ 2zðfÞ

z0ðfÞ sin h
oW
of

����
�f

; ð38Þ
where
sin h ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðfÞ�zðfÞ

p
1þ zðfÞ�zðfÞ ; ð39Þ

wzðz;�zÞ ¼ wðhðz;�zÞ;/ðz;�zÞÞ; Wðf;�fÞ ¼ wzðzðfÞ;�zð�fÞÞ; ð40Þ
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oW
of

����
�f

¼ � x0

8pi

Z Z
P f

xfðf; aÞ
xðf; aÞ �

xfðf; �a�1Þ
xðf; �a�1Þ

� �
4z0ðaÞ�z0ð�aÞ
ð1þ zðaÞ�zð�aÞÞ2

d�a ^ da

¼ � x0

8pi

Z Z
P f

o

o�a
�xfðf; aÞ

xðf; aÞ
4z0ðaÞ

ð1þ zðaÞ�zð�aÞÞzðaÞ

� �
d�a ^ da

þ x0

8pi

Z Z
P f

o

oa
�xfðf; �a�1Þ

xðf; �a�1Þ
4�z0ð�aÞ

ð1þ zðaÞ�zð�aÞÞ�zð�aÞ

� �
d�a ^ da

¼ � x0

8pi

Z Z
P f

o

o�a
xfðf; aÞ
xðf; aÞ F ða; �aÞ

� �
d�a ^ daþ x0

8pi

Z Z
P f

o

oa
xfðf; �a�1Þ
xðf; �a�1Þ F ð�a; aÞ

� �
d�a ^ da
and we have introduced the function
F ða; �aÞ ¼ � 4z0ðaÞ
ð1þ zðaÞ�zð�aÞÞzðaÞ : ð41Þ
Invoking the complex form of Stokes theorem (twice) we finally obtain
oW
of

����
�f

¼ � x0

8pi

Z
oP f

xfðf; aÞ
xðf; aÞ F ða; �aÞ

� �
daþ

Z
oP f

xfðf; �a�1Þ
xðf; �a�1Þ F ð�a; aÞ

� �
d�a

" #
: ð42Þ
This last equation shows that the calculation of the velocity field outside the patch P s reduces to the evaluation
of a line integral. This means there is a contour dynamics formulation for the evolution of a uniform vortex
patch in any finitely connected domain on a sphere.

An important observation is that the line integrals appearing in (42) are exactly of the same form as those
arising in the contour dynamics formulation in planar domains as presented in [7]; the only difference is that,
in the planar case, the function F is instead given by
F ða; �aÞ ¼ z0ðaÞ�zð�aÞ: ð43Þ

With this observation the numerical algorithm developed for contour dynamics in planar domains with
impenetrable boundaries [7] extends to the spherical case in a straightforward manner, as described in the next
section.

4.1. Contour dynamics algorithm for sphere

We now outline the three key steps in our contour dynamics algorithm. The method is an adaptation of that
already presented in Crowdy and Surana [7]. Many of the ideas to follow are borrowed from Dritschel [8,9]
but have been adapted for present purposes.

1. Contour representation and adaptive node adjustment. Following Dritschel [8] we represent the contour oP s

by a set of nodes with the spherical coordinates ðhk;/kÞ and use interpolating functions between them. Let
xj ¼ ðcos /j sin hj; sin /j sin hj; cos hjÞ be the corresponding Cartesian coordinates for the node j then the
contour between two nodes say xj and xjþ1 is assumed to take the form
XjðsÞ ¼ xi þ sðxjþ1 � xjÞ þ gjðsÞðxj � xjþ1Þ þ
1

4
sð1� sÞðxjþ1 þ xjÞ j xjþ1 � xjj2; ð44Þ
where
gjðsÞ ¼ ajsþ bjs
2 þ cjs

3; ð45Þ
for 0 6 s 6 1. The coefficients in gðsÞ are
aj ¼ �
1

3
ejjj �

1

6
ejjj; bj ¼

1

2
ejjj; cj ¼

1

6
ejðjjþ1 � jjÞ; ð46Þ
where ej ¼j xjþ1 � xj j and jj is the curvature given by
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jj ¼
2xj � ðxþ � x�Þ
j xþe2

� � x�e2
þj
; ð47Þ
with

x� ¼ xj�1 � xj; e� ¼j x� j : ð48Þ
The algorithm for adaptive node adjustment is the same as for the planar case treated in [7] with the value of

curvature used being the total curvature
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

j þ 1
q

.

2. Evaluation of contour integrals on the sphere. To evaluate expression (42) we split the integrals as
oW
of

����
�f

¼ IrðfÞ þ IsðfÞ; ð49Þ
where
IrðfÞ ¼ �
x0

8pi

I
oP f

F ð�a; aÞ
ðf� �a�1Þ d�aþ

I
oP f

x̂fðf; aÞ
x̂ðf; aÞ F ða; �aÞ

� �
da

"
þ
I

oP f

x̂fðf; �a�1Þ
x̂ðf; �a�1Þ F ð�a; aÞ

� �
d�a

#
; ð50Þ
and I

IsðfÞ ¼

x0

8pi oP f

F ða; �aÞ
ða� fÞ da: ð51Þ
The contour oP f in Df domain is represented by a set of image nodes under the conformal map, i.e.
ffj j j ¼ 1; . . . ;Ng with a locally-determined cubic polynomial as the interpolation function. In this scheme,
the contour between two nodes fj and fjþ1 is represented by
bjðsÞ ¼ fi þ sðfjþ1 � fjÞ þ igjðsÞðfjþ1 � fjÞ; ð52Þ
where, ej ¼j fjþ1 � fj j, gjðsÞ is given by (45) and jj is the planar curvature at node fj computed by passing a
circle through the nodes fj�1, fj and fjþ1. With the cubic representation of contour (44), the contour integral
(50) becomes
IrðfÞ ¼ �
x0

8pi

XN

j¼1

Z 1

0

F ð�bjðsÞ; bjðsÞÞ
ðf� �bjðsÞ�1Þ

�b0jðsÞds� x0

8pi

XN

j¼1

Z 1

0

x̂fðf; bjðsÞÞ
x̂ðf; bjðsÞÞ

F ðbjðsÞ; bjðsÞÞ
 !

b0jðsÞds

� x0

8pi

XN

j¼1

Z 1

0

x̂fðf; �b�1
j ðsÞÞ

x̂ðf; �b�1
j ðsÞÞ

F ð�bjðsÞ; bjðsÞÞ
 !

�b0jðsÞds:
Since for a nodal point i.e., f ¼ fk, the integrals appearing in Ir remain regular, IrðfkÞ can be computed using
any standard numerical quadrature scheme. Computation of IsðfÞ at f ¼ fk, however requires care. The inte-
gral can be expressed as
IsðfkÞ ¼
x0

8pi

XN

j¼1;j 6¼k�1;k

Z 1

0

F ðbjðsÞ; �bjðsÞÞ � F ðfk;�fkÞ
ðbjðsÞ � fkÞ

b0jðsÞdsþ Ik�1ðfkÞ þ IkðfkÞ; ð53Þ
where
IkðfkÞ �
x0

8pi

oF ðfk;�fkÞ
oa

ðfkþ1 � fkÞ þ
oF ðfk;�fkÞ

o�a
ð�fkþ1 � �fkÞð1� I kÞ

� �
; ð54Þ

Ik�1ðfkÞ �
x0

8pi

oF ðfk;�fkÞ
oa

ðfk � fk�1Þ þ
oF ðfk;�fkÞ

o�a
ð�fk � �fk�1Þð1� I k�1Þ

� �
; ð55Þ
with
oF ðfk;�fkÞ
oa

¼� 4zffðfkÞ
ð1þzðfkÞ�zðfkÞÞzðfkÞ

þ
4z2

fðfkÞ
ð1þzðfkÞ�zðfkÞÞz2ðfkÞ

þ
4z2

fðfkÞ�zð �fkÞ
ð1þzðfkÞ�zðfkÞÞ2zðfkÞ

;

oF ðfk;�fkÞ
o�a

¼ 4 jzfðfkÞj2

ð1þzðfkÞ�zðfkÞÞ2
; ð56Þ
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and
I k ¼ 2

Z 1

0

lnð1þ i½ak þ bksþ cks2�Þds; I k�1 ¼ 2

Z 1

0

lnð1� iak�1sþ ick�1s2�Þds: ð57Þ
The integrals I k�1 and I k can be computed analytically but we omit the details here.
3. Advection of the contour. The patch boundary oP s position is updated by advecting each node ðhk;/kÞ,

k ¼ 1; . . . ;N in time. The evolution of a node satisfies the ordinary differential equation
_hk ¼ uhðhk;/kÞ; _/k ¼
1

sin hk
u/ðhk;/kÞ; ð58Þ
where the velocity components ðuh; u/Þ are given by the relation (38). We use an explicit fourth-order Runge–
Kutta scheme for the time-stepping.

5. Numerical examples

The current implementation of our algorithm is a basic one meant to examine the viability of the new
scheme in practice. It performed well in a series of test cases in the planar case [7] and we now present some
similar examples on a spherical surface. Since we do not perform contour surgery, we do not expect that our
current numerical implementation of the algorithm to be able to perform integrations over very long times. As
a result, we are not able to show the evolution of the patch once filamentation becomes significant. A future
manifestation of the code should incorporate such contour surgery procedures.

5.1. A spherical cap

Consider a spherical surface with a solid circular cap covering the north pole of the sphere. Suppose the cap
corresponds in z plane of projection to the circular disc Dz ¼ fj z j6 r0g. Dz is conformally equivalent to the
unit disc under the simple conformal map
zðfÞ ¼ r0f: ð59Þ

This example has been studied both by Kidambi and Newton [16] and Crowdy [4] for the case of point
vortices and, as expected, the point vortex trajectories are found to be concentric circles coinciding with
the latitude circles of the sphere. On the other hand, Fig. 3 shows snapshots of the evolution of a vortex
patch. Like the point vortex trajectories, the patch path also encircles the spherical cap, irrespective of its
initial location. This is evident from Fig. 3a and b for which the patch is initialized near the equator and
Fig. 3c and d for which the patch is released near the cap. However, note that when the patch starts off
nearer to the cap, it begins to develop long thin filamentary strands (see Fig. 3d). This is expected since,
being near the solid wall, the patch experiences large strain rates from the image vorticity in the wall. This
is qualitatively similar to what is observed in the planar case for the patch near an infinite straight wall
[7]. It is reassuring, however, that the current algorithm captures the onset of filamentation with no
difficulty.

5.2. Motion through a gap in wall

Consider the problem of vortex patch motion through a gap in a wall. For the plane, the problem was con-
sidered first by Johnson and McDonald [15]. Suppose there exists an impenetrable wall around the great circle
corresponding to / ¼ 0; p except for a single gap symmetrical about the south pole, spanning the latitudes
½p� h0; p� where h0 is some chosen angle between 0 and p. In the z plane of projection the wall corresponds
to the segment of the real axis
ð�1;�LÞ [ ðL;1Þ; ð60Þ

where, L ¼ cot h0=2 and the conformal map to the unit disc is given by



Fig. 3. Vortex patch evolution in a region exterior to a spherical cap with boundary at latitude h0 ¼ p
4
. The four figures show the evolution

as the initial patch is initially increasingly close to the wall. Eventually, a filamentary thread is seen to form.

Fig. 4.
condit
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zðfÞ ¼ 2Lf

1þ f2
: ð61Þ
Depending on the value of h0 (or equivalently, L), qualitatively different point vortex trajectories can arise
[4]. Concerning vortex patch motion we consider two values of h0 ¼ p=2 ðL ¼ 1Þ and h0 ¼ 3p=4
ðL ¼ 0:4142Þ leading to two different types of behaviour: Fig. 4 shows the patch evolution for L ¼ 1, while
Fig. 5a and b show the two possible qualitatively distinct patch motions for L ¼ 0:4142. For L ¼ 1, we
take the initial position of the patch to be far from the wall; it does not undergo filamentation as it encir-
cles the wall (see Fig. 4a and b for two different views of patch evolution). On the other hand, the initial
location of the patch in Fig. 5a is sufficiently close to the wall that the patch undergoes filamentation as it
moves around it.

5.3. Multiply connected domains

The domains in the examples considered so far have been simply connected and the SK prime function is
just xðf; cÞ ¼ ðf� cÞ. To apply the method to a domain of higher connectivity, all that is needed is to modify
this prime function to incorporate the topological differences associated with higher connected domains. This
simplicity is one of the main advantages of the method.
Two different views of the evolution of a vortex patch near a gap in a wall for gap-width corresponding to L ¼ 1. For this initial
ion, the patch passes through the gap.



Fig. 5. Two qualitatively different types of vortex patch evolution for a gap-width corresponding to L ¼ 0:4142: (a) the patch encircles the
wall; (b) the patch evolves along a closed path confined to one side to the wall.

Fig. 6. Vortex patch evolution in a uniform channel. This domain is doubly connected. The onset of filamentation is clearly seen.
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Consider the case of a doubly connected fluid domain – vortex motion in a channel encircling the spherical
surface. The circular domain Df can now be taken as the concentric circular annulus q <j f j< 1 and the rel-
evant SK prime function (obtained from the infinite product formulae (13) and (14)) in this case is
xðf; cÞ ¼ Cc�1P ðfc�1Þ ð62Þ

where C is an unimportant constant and
P ðfÞ ¼ ð1� fÞ
Y1
k¼1

ð1� q2kfÞð1� q2kf�1Þ: ð63Þ
As found in the case of a point vortex, a vortex patch moves in a uniform channel in a circular path as shown
in Fig. 6. Note, however, that finite-area effects now play a role: filamentation is seen to occur as the patch gets
closer to the two boundary walls since it experiences the high strain rates associated with the image vorticity in
the walls.

6. Conclusion

In this paper, by using an approach based on conformal mapping, we have extended Kirchhoff–Routh the-
ory in a constructive way to multiply connected domains on a spherical shell and derived an explicit formula
for the Hamiltonian governing the motion of N point vortices. Further, it has been shown that there exists a
contour dynamics formulation for the evolution of uniform vortex patches in any such multiply connected
domain on a spherical surface. The algorithm is similar to an analogous contour dynamics scheme, relevant
to planar multiply connected domains, presented recently by Crowdy and Surana [7]. The numerical imple-
mentation presented here is a straightforward extension of that method. The efficacy of the numerical scheme
has been demonstrated through a series of examples.

The method is very general and can be combined with any existing numerical conformal mapping code to
compute the point vortex and vortex patch motion in more or less arbitrary flow domains on a sphere. Our
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current numerical implementation is not optimal, however, and can be improved in various ways. This
includes incorporating contour surgery procedures to allow integrations over longer times; a second possibility
is to find improved ways to compute the integrals involved in the velocity calculations to higher order accu-
racy. These challenges are left for the future.
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